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Image Generation

Figure 1: Image generation results from our model: AS-IntroVAE

1 (1) Introduction and Related Works Image Generation
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Classical Methods

1 Generative Adversarial Networks(GAN)[Goo+14]

min
G

max
D

V (D, G) = Ex∼pdata (x)[log D(x)] + Ez∼pz (z)[log(1 − D(G(z)))].
(1)

where D is discriminator, G is generator, x is the datasets, z is the
latent variable.

2 Variational AutoEncoder(VAE)[KW13]

log p(x) ≥ Eq(z|x)[log p(x , z) − log q(z | x)]
:= ELBO
= Eq(z|x)[log p(x | z)]︸ ︷︷ ︸

Reconstruct term LRec

− DKL(q(z | x)∥p(z))︸ ︷︷ ︸
KL term LKL

(2)

where KL is KL Divergence, p is decoder, q is encoder.

1 (1) Introduction and Related Works Classical Methods
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Related Works

To tackle with the drawbacks of VAE(Posterior collapse[Bow+15], vague
visual quality[DB16]) and GAN(mode collpase, vanishing
gradient[Goo16]), here are some related works.

1 GAN:
WGAN[ACB17],WGAN-GP[Gul+17],SN-GAN[Miy+18]

2 VAE:
VAE-GAN[Lar+16],AAE[MNG17a],ALI[Dum+16],BiGAN[DKD16]

Limitation: Quality not good enough, Need extra networks.

1 (1) Introduction and Related Works Related Works
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Introspective VAE(Intro-VAE)[Hua+18]

Combine VAE(statistical analysis) and GAN(adversarial learning)
together.

LE = ELBO(x) +
∑

s=r ,g
[m − KL (qϕ (z |xs) ∥p(z)]+

LD =
∑

s=r ,g
[KL (qϕ (z |xs) ∥p(z))]

(3)

where xr is the reconstructed image, xg is the generated image, and m is
the hard threshold for constraining the KL divergence.

1 (1) Introduction and Related Works Introspective VAE(Intro-VAE)[Hua+18]
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Soft-IntroVAE[DT21]

The hard threshold makes training stability sensitive to the hyper
parameter, S-IntroVAE introduces a soft expression.

LE = ELBO(x) − 1
α

∑
s=r ,g

exp (αELBO (xs))

LD = ELBO(x) + γ
∑

s=r ,g
ELBO (xs)

(4)

where α, γ are both hyperparameters.

1 (1) Introduction and Related Works Soft-IntroVAE[DT21]
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Limitation and Solution

Those introspective learning-based methods suffer from the posterior
collapse problem and the vanishing gradient problem.
Contribution:

1 A new introspective variational autoencoder named Adversarial
Similarity Distance Introspective Variational Autoencoder
(AS-IntroVAE)

2 A new theoretical understanding of the posteriors collapse and the
vanishing gradient problem in VAEs.

3 A novel similarity distance named Adversarial Similarity Distance
(AS-Distance) for measuring the differences between the real and
the synthesized images.

4 Promising results on image generation and image reconstruction
tasks with significantly faster convergence speed

1 (1) Introduction and Related Works Limitation and Solution
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Theoretical Analysis

Inspired by 1-Wasserstein distance, which could provide stable gradients,
the AS-Distance is defined as:

D (pr , pg ) = Ex∼p(z)[
(
Ex∼pr [q (z |x)] − Ex∼pg [q (z |x)]

)
]2 (5)

where pr is distribution of real data, pg is distribution of generated data.
The encoder and the decoder plays an adversarial game on this distance:

arg min
Dec

max
Enc

D (pr , pg ) (6)

1 (1) AS-IntroVAE Theoretical Analysis
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We use 2-Wasserstein so that we could apply a kernel trick on Equ.5.

D(pr , pg ) = Ex∼pr,g

[
k

(
x i

r , x j
r
)

+ k
(
x i

g , x j
g
)

− 2k
(
x i

r , x j
g
)]

(7)

where k
(
x i

r , x j
g
)

= Ez∼p(z)[q(z |x i
r ) · q(z |x i

g )].
Since the latent space is a normal distribution. This kernel k can be
deduced as

k
(
x i

r , x j
g
)

=
− 1

2
(ui

r −uj
g)2

λi
r +λj

g

(2π) n
2 ·

(
λi

r + λj
g

) 1
2

(8)

where u, λ represent the variational inference on the mean and variance
of x , i , j represent the ith, jth pixel in images.

1 (1) AS-IntroVAE Theoretical Analysis
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During the experiment, we found that KL term from S-IntroVAE would
generate sharp but distort images, whereas our AS term (without KL
term) would generate diverse but blur images.

Figure 2: S-IntroVAE performance at CelebA-128, when the weight for KL
divergence and AS-Distance are both 0.5. The upper/middle/bottom two rows
refer to real/reconstructed/generated images.

1 (1) AS-IntroVAE Theoretical Analysis



Short Title 13/40 Short Presentation Details

Inspired by ([Fu+19]), we decide to gradually increase the weight for KL
(from 0 to 1), and decrease the weight for AS (from 1 to 0) during
training.
We derive the loss function for AS-IntroVAE as:

LEϕ
= ELBO(x) − 1

α

∑
s=r ,g

exp(α(Eq(z|xs )[log p(x | z)]

+ cKL(qϕ(z |xs)∥p(z)) + (1 − c)D(xr , xg )))

LDθ
= ELBO(x) + γ

∑
s=r ,g

(Eq(z|xs )[log p(x | z)]

+ cKL(qϕ(z |xs)∥p(z)) + (1 − c)D(xr , xg ))

(9)

where c = min(i ∗ 5/T , 1), i is the current iteration and T is total
iteration.

1 (1) AS-IntroVAE Theoretical Analysis
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Theorem 1
Introspective Variational Autoencoders (IntroVAEs) have vanishing
gradient problems.

Proof.
As illustrated in IntroVAEs (IntroVAE and S-IntroVAE), the Nash
equilibrium can be attained when KL (qϕ (z |xr ) ∥qϕ (z |xg )) = 0, where xr
could also represents the real images since the reconstructed images are
sampled from real data points. Moreover, with the object
DKL (qϕ(z | x)∥p(z)) = 0, we have:

qϕ (z |xr ) = qϕ (z |xg ) = p(z) (10)

Replace the term p(z) with qϕ(z|xr )+qϕ(z|xg )
2 , the adversarial term for the

decoder then becomes:

KL
(

qϕ (z |xr ) ∥qϕ (z |xr ) + qϕ (z |xg )
2

)
+ KL

(
qϕ (z |xg ) ∥qϕ (z |xr ) + qϕ (z |xg )

2

)
= 2JSD (qϕ (z |xr ) ∥qϕ (z |xg ))

(11)
1 (1) AS-IntroVAE Theoretical Analysis
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Therefore, the gradient of loss for Decoder in IntroVAE becomes:

∇LD = ∇2JSD (qϕ (z |xr ) ∥qϕ (z |xg )) (12)

As shown by ([AB17]), if Pxr and Pxg are two distributions in two different
manifolds that don’t align perfectly and don’t have full dimension (i.e.,
the dimension of the latent variable is sparse in the image dimension).
Consequently, there will be an optimal discriminator with 100% accuracy
for classify almost any x in these two manifolds, resulting in ∇LD = 0.

1 (1) AS-IntroVAE Theoretical Analysis
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Figure 3: AS-IntroVAE workflow. In the first phase, the encoder-decoder
receives the real image and produce the reconstructed image. In the second
phase, the same encoder-decoder conduct adversarial learning in the latent
space for the reconstructed image and the fake image.
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Figure 4: Illustration of how AS-IntroVAE addresses the posterior collapse
problem. Both IntroVAE/S-IntroVAE and the proposed AS-IntroVAE project
the real images into the latent space. However, IntroVAE/S-IntroVAE force
every image to match the prior distribution of the latent space. AS-IntroVAE
align the image with the prior distribution in a per-batch manner.

1 (1) Experiment
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Results

Figure 5: Visual Comparison on 2D Toy Dataset 8 Gaussians. From top to
bottom row: results with different hyperparameters. From left to right column:
VAE, IntroVAE, S-IntroVAE, Ours.

1 (1) Experiment Results
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Figure 6: Image Generation Visual Comparison at CelebA-128 dataset. From
left to Right: WGAN-GP, S-IntroVAE, Ours

Figure 7: Image Generation Visual Comparison at CelebA-256 dataset. From
left to Right:WGAN-GP, S-IntroVAE, Ours1 (1) Experiment Results
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Figure 8: Image Reconstruction Visual Comparison at CelebA-128 dataset.

1 (1) Experiment Results
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VAE IntroVAE S-IntroVAE Ours
2*C1 KL 220.2 192.4 50.2 3.4

JSD 110.1 56.0 16.9 5.6
2*C2 KL 220.3 191.1 136.5 1.3

JSD 110.0 68.0 36.6 4.4
2*C3 KL 220.2 64.0 46.2 2.0

JSD 109.8 53.0 9.6 7.1

Table 1: 2D Toy Dataset 8 Gaussians
Score KL↓/JSD↓ Table

WGAN-GP S-IntroVAE Ours
MNIST 139.02 98.84 96.16
CIFAR-10 434.11 275.20 271.69
CelebA-128 160.53 140.35 130.74
CelebA-256 170.79 143.33 129.61

Table 2: Image Generation FID
Score↓ Table.

PSNR SSIM MSE
S-IntroVAE Ours S-IntroVAE Ours S-IntroVAE Ours

MNIST 20.282 21.014 0.885 0.898 0.011 0.009
CIFAR-10 19.300 19.445 0.599 0.620 0.019 0.019

Oxford 15.372 20.168 0.348 0.604 0.049 0.013
CelebA-128 17.818 22.924 0.561 0.801 0.018 0.006
CelebA-256 22.422 23.156 0.790 0.758 0.007 0.006

Table 3: Image Reconstruction PSNR↑/SSIM↑/MSE↓ Score Table

1 (1) Experiment Results



Short Title 23/40 Short Presentation Details

Figure 9: The training stability visual comparison at CelebA-128 dataset. From
left to right panel: 10 epoch, 20 epoch, 50 epoch.

1 (1) Experiment Results
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Figure 10: Image generation visual comparisons at CelebA-128 dataset
(resolution: 128 × 128).

1 (1) Experiment Results
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Figure 11: Image generation visual comparisons at CelebA-256 dataset
(resolution: 256 × 256).

1 (1) Experiment Results
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Figure 12: Image generation visual comparisons at MNIST dataset (resolution:
28 × 28).

1 (1) Experiment Results
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1 This paper introduces Adversarial Similarity Distance Introspective
Variational Autoencoder (AS-IntroVAE), a new introspective
approach that can faithfully address the posterior collapse and the
vanishing gradient problem.

2 Our theoretical analysis rigorously illustrated the advantages of the
proposed Adversarial Similarity Distance (AS-Distance).

3 Our empirical results exhibited compelling quality, diversity, and
stability in image generation and construction tasks.

4 In the future, we hope to apply the proposed AS-IntroVAE to high
resolution (e.g., 1024 × 1024) image synthesis. We also hope to
extend AS-IntroVAE to reinforcement learning and self-supervised
learning tasks.

1 (1) Conclusion
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