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Abstract

Recently, introspective models like IntroVAE and S-IntroVAE have excelled in im-
age generation and reconstruction tasks. The principal characteristic of intro-
spective models is the adversarial learning of VAE, where the encoder attempts
to distinguish between the real and the fake (i.e., synthesized) images. How-
ever, due to the unavailability of an effective metric to evaluate the difference
between the real and the fake images, the posterior collapse and the vanishing
gradient problem still exist, reducing the fidelity of the synthesized images. In
this paper, we propose a new variation of IntroVAE called Adversarial Similarity
Distance Introspective Variational Autoencoder (AS-IntroVAE). We theoretically
analyze the vanishing gradient problem and construct a new Adversarial Similar-
ity Distance (AS-Distance) using the 2-Wasserstein distance and the kernel trick.
With weight annealing on AS-Distance and KL-Divergence, the AS-IntroVAE are
able to generate stable and high-quality images. The posterior collapse problem
is addressed by making per-batch attempts to transform the image so that it bet-
ter fits the prior distribution in the latent space. Compared with the per-image
approach, this strategy fosters more diverse distributions in the latent space, al-
lowing our model to produce images of great diversity. Comprehensive experi-
ments on benchmark datasets demonstrate the effectiveness of AS-IntroVAE on
image generation and reconstruction tasks.

Background

The learning object of VAE is to maximize the evidence lower bound (ELBO) as
below:

logθ(x) ≥ Eqφ(z|x) log pθ(x | z)−DKL
(
qφ(z | x)‖pθ(z)

)
(1)

where x is the input data, z is the latent variable.
• The loss function of IntroVAE

LE = ELBO(x) +
∑
s=r,g

[
m−KL

(
qφ (z|xs) ‖p(z)

]+
LD =

∑
s=r,g

[
KL

(
qφ (z|xs) ‖p(z)

)]
.

(2)

where xr is the reconstructed image, xg is the generated image, and m is
the hard threshold for constraining the KL divergence.

• The loss function of Soft-IntroVAE

LE = ELBO(x)− 1

α

∑
s=r,g

exp (αELBO (xs))

LD = ELBO(x) + γ
∑
s=r,g

ELBO (xs)
(3)

where α, γ are both hyperparameters.

Problems

Fig. 1: Image/Numerical generation results of Soft-IntroVAE (from left to right: CelebA128, CelebA256, 8 Gaussian).

Drawbacks: vanishing gradient and mode collapse

Proposed Method and Quantitative Results
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Fig. 2: AS-IntroVAE workflow

AS-IntroVAE contains an encoder-decoder architecture. In the first phase, the encoder-
decoder receives the real image and produce the reconstructed image. Meanwhile, the de-
coder will generate fake image from Gaussian noise alone. In the second phase, the same
encoder-decoder conduct adversarial learning in the latent space for the reconstructed im-
age and the fake image.
To address the vanishing gradient problems of S-IntroVAE and IntroVAE, we propose a
novel similarity distance called Adversarial Similarity Distance (AS-Distance). Inspired by
Wasserstein distance and the distance metrics in unsupervised domain adaptation,

D
(
pr, pg

)
= Ex∼p(z)[

(
Ex∼pr [q (z|x)]− Ex∼pg [q (z|x)]

)
]2 (4)

where pr is distribution of real data, pg is distribution of generated data.
Since the latent space is a normal distribution. This kernel k can be deduced as

k
(
xir, x

j
g

)
=

−1
2

(
uir−u

j
g

)2
λir+λ

j
g

(2π)
n
2 ·
(
λir + λ

j
g

)1
2

(5)

where u, λ represent the variational inference on the mean and variance of x, i, j represent
the ith, jth pixel in images. we derive the loss function for AS-IntroVAE as:

LEφ = ELBO(x)− 1

α

∑
s=r,g

exp(α(Eq(z|xs)[log p(x | z)]

+ cKL(qφ(z|xs)‖p(z)) + (1− c)D(pr, pg)))

LDθ = ELBO(x) + γ
∑
s=r,g

(Eq(z|xs)[log p(x | z)]

+ cKL(qφ(z|xs)‖p(z)) + (1− c)D(pr, pg))

(6)

where c = min(i ∗ 5/T, 1), i is the current iteration and T is total iteration.
VAE IntroVAE S-IntroVAE Ours

C1
KL 220.2 192.4 50.2 3.4
JSD 110.1 56.0 16.9 5.6

C2
KL 220.3 191.1 136.5 1.3
JSD 110.0 68.0 36.6 4.4

C3
KL 220.2 64.0 46.2 2.0
JSD 109.8 53.0 9.6 7.1

2D Toy Dataset 8 Gaussians Score KL↓/JSD↓ Table.

WGAN-GP S-IntroVAE Ours
MNIST 139.02 98.84 96.16
CIFAR-10 434.11 275.20 271.69
CelebA-128 160.53 140.35 130.74
CelebA-256 170.79 143.33 129.61

Image Generation FID Score↓ Table.

Qualitative comparisons

The training stability visual comparison at CelebA-128 dataset. From left to right
panel: 10 epoch, 20 epoch, 50 epoch. For each image grid, the first and the
second row are real images, the third and fourth rows are reconstructed images,
and the fifth and sixth rows are generated images. Zoom in for a better view.
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The additional visual comparison for image generation tasks. From left to right:
WGAN-GP, S-IntroVAE, AS-IntroVAE.

Image generation visual comparisons at CelebA-128 dataset (resolution: 128 ×
128).

Image generation visual comparisons at CelebA-256 dataset (resolution: 256 ×
256).

Image generation visual comparisons at MNIST dataset (resolution: 28 × 28).


